Tin Compensation for the SnS Based Optoelectronic Devices

نویسندگان

  • S. F. Wang
  • W. Wang
  • W. K. Fong
  • Y. Yu
  • C. Surya
چکیده

In this paper we report the growth of high quality SnS thin films with good crystallinity deposited on two-dimensional (2D) mica substrates. It is believed that the 2D nature of SnS, with strong intra-layer covalent bonds and weak inter-layer van der Waals interactions, is responsible for its relative insensitivity to lattice mismatch. We also investigated the reduction of Sn vacancies in the material using Sn-compensation technique during the material growth process. The experimental results clearly demonstrated substantial enhancements in the electrical and structural properties for films deposited using Sn-compensation technique. A mobility of 51 cm2  V-1 s-1 and an XRD rocking curve full width at half maximum of 0.07° were obtained. Sn-compensated SnS/GaN:Si heterojunctions were fabricated and significant improvement in both the I-V characteristics and the spectral responsivities of the devices were characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study

SnS is a metal monochalcogenide suitable for use as absorber material in thin film photovoltaic cells. Its structure is an orthorhombic crystal of weakly coupled layers, each layer consisting of strongly bonded Sn-S units. We use first-principles calculations to study model single-layer, double-layer, and bulk structures of SnS in order to elucidate its electronic structure. We find that the op...

متن کامل

Facile solution synthesis and photoelectric properties of monolithic tin(II) sulfide nanobelt arrays.

The tremendous future energy demand and environmental concerns prompt the lasting search for new materials for low-cost and high-efficiency solar cells. SnS, as a low-cost, earth-abundant, and environmentally friendly material with proper band gap and absorption coefficient, has received attention as a potential candidate for solar absorber, but it is still under-developed due to insufficient c...

متن کامل

Thermal Annealing Influence over Optical Properties of Thermally Evaporated SnS/CdS Bilayer Thin Films

Thin films of tin sulfide/cadmium sulfide (SnS/CdS) were prepared bythermal evaporation method at room temperature on a glass substrate and then annealedat different temperature with the aim of optimizing the optical properties of the materialfor use in photovoltaic solar cell devices. The effect of annealing on optical propertiesof SnS/CdS film was studied in the temper...

متن کامل

Highly Conductive Transparent Organic Electrodes with Multilayer Structures for Rigid and Flexible Optoelectronics

Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative...

متن کامل

A New Electrochemical Sensor for Determination of Zolpidem by Carbon Paste Electrode Modified with SnS@SnO2NP

Zolpidem is a drug that is easily attached to the GABA receptors in the brain. This property makes it very effective for tranquilizing as well as hypnagogia. According to the advantages of electrochemical analysis like high selectivity, high sensitivity, low concentration of analyte, cost-effective, portable and easy-to-use setup, they gained high amount of attention among scientists for determ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017